Welcome! I'm a Ph.D. candidate at Oregon State University, specializing in **computational linear algebra, spectral graph theory, and computational topology**. My goal is to build bridges between abstract mathematical structures (like those found in abstract algebra) and tangible computational problems. My research delves into how linear algebra can be optimized for large-scale data (spectral graph theory) and how understanding the geometry or topology of data or systems can unlock new insights or reveal vulnerabilities. This blend of theoretical rigor and geometric/structural thinking is central to my work. Coming from a strong Math background (B.S.), I thrive on the elegance of proofs and the power of algorithms. Advised by Dr. Amir Nayyeri and Dr. Huck Bennett, I'm now seeking roles where I can contribute this theoretical perspective to challenging problems in practical fields like data science, machine learning, and cybersecurity. I'm always excited to discuss how these theoretical tools – developed in the realm of CS theory – can be applied to solve real-world problems.
| Title | Year | Journal | Link |
|---|---|---|---|
| Graph Inference with Effective Resistance Queries | 2026 | Proceedings of Machine Learning Research | 🔗 |
| Matrix Multiplication Verification Using Coding Theory | 2024 | Leibniz International Proceedings in Informatics | 🔗 |
Email: e@evelynw.xyz
Address: Oregon State University EECS, Corvallis, OR